
Guide to NumPy
Travis E. Oliphant, PhD

Dec 7, 2006

This book is under restricted distribution using a Market-Determined, Tempo-

rary, Distribution-Restriction (MDTDR) system (see http://www.trelgol.com) until

October 31, 2010 at the latest. If you receive this book, you are asked not to copy it

in any form (electronic or paper) until the temporary distribution-restriction lapses.

If you have multiple users at an institution, you should either share a single copy

using some form of digital library check-out, or buy multiple copies. The more

copies purchased, the sooner the documentation can be released from this incon-

venient distribution restriction. After October 31, 2010 this book may be freely

copied in any format and used as source material for other books as long as ac-

knowledgement of the original author is given. Your support of this temporary

distribution restriction plays an essential role in allowing the author and others like

him to produce more quality books and software.

1

Contents

I NumPy from Python 12

1 Origins of NumPy 13

2 Object Essentials 18

2.1 Data-Type Descriptors . 20

2.2 Basic indexing (slicing) . 23

2.3 Memory Layout of ndarray . 26

2.3.1 Contiguous Memory Layout 26

2.3.2 Non-contiguous memory layout 28

2.4 Universal Functions for arrays . 30

2.5 Summary of new features . 32

2.6 Summary of differences with Numeric 34

2.6.1 First-step changes . 34

2.6.2 Second-step changes . 37

2.6.3 Updating code that uses Numeric using alter codeN 38

2.6.4 Changes to think about . 39

2.7 Summary of differences with Numarray 40

2.7.1 First-step changes . 41

2.7.1.1 Import changes . 41

2.7.1.2 Attribute and method changes 42

2.7.2 Second-step changes . 43

2.7.3 Additional Extension modules 43

3 The Array Object 45

3.1 ndarray Attributes . 45

3.1.1 Memory Layout attributes . 46

3.1.2 Data Type attributes . 50

2

3.1.3 Other attributes . 51

3.1.4 Array Interface attributes . 52

3.2 ndarray Methods . 55

3.2.1 Array conversion . 55

3.2.2 Array shape manipulation . 60

3.2.3 Array item selection and manipulation 62

3.2.4 Array calculation . 66

3.3 Array Special Methods . 72

3.3.1 Methods for standard library functions 72

3.3.2 Basic customization . 73

3.3.3 Container customization . 75

3.3.4 Arithmetic customization . 76

3.3.4.1 Binary . 76

3.3.4.2 In-place . 78

3.3.4.3 Unary operations 79

3.4 Array indexing . 80

3.4.1 Basic Slicing . 80

3.4.2 Advanced selection . 82

3.4.2.1 Integer . 82

3.4.2.2 Boolean . 84

3.4.3 Flat Iterator indexing . 85

4 Basic Routines 86

4.1 Creating arrays . 86

4.2 Operations on two or more arrays . 91

4.3 Printing arrays . 94

4.4 Functions redundant with methods 95

4.5 Dealing with data types . 96

5 Additional Convenience Routines 98

5.1 Shape functions . 98

5.2 Basic functions . 102

5.3 Polynomial functions . 110

5.4 Set Operations . 113

5.5 Array construction using index tricks 114

5.6 Other indexing devices . 117

5.7 Two-dimensional functions . 118

3

5.8 More data type functions . 120

5.9 Functions that behave like ufuncs . 123

5.10 Miscellaneous Functions . 123

5.11 Utility functions . 126

6 Scalar objects 128

6.1 Attributes of array scalars . 129

6.2 Methods of array scalars . 131

6.3 Defining New Types . 132

7 Data-type (dtype) Objects 133

7.1 Attributes . 134

7.2 Construction . 136

7.3 Methods . 139

8 Standard Classes 141

8.1 Special attributes and methods recognized by NumPy 142

8.2 Matrix Objects . 143

8.3 Memory-mapped-file arrays . 145

8.4 Character arrays (numpy.char) . 146

8.5 Record Arrays (numpy.rec) . 147

8.6 Masked Arrays (numpy.ma) . 151

8.7 Standard container class . 152

8.8 Array Iterators . 152

8.8.1 Default iteration . 153

8.8.2 Flat iteration . 153

8.8.3 N-dimensional enumeration 154

8.8.4 Iterator for broadcasting . 154

9 Universal Functions 156

9.1 Description . 156

9.1.1 Broadcasting . 157

9.1.2 Output type determination 157

9.1.3 Use of internal buffers . 158

9.1.4 Error handling . 158

9.1.5 Optional keyword arguments 159

9.2 Attributes . 160

9.3 Casting Rules . 161

4

9.4 Methods . 162

9.4.1 Reduce . 164

9.4.2 Accumulate . 164

9.4.3 Reduceat . 165

9.4.4 Outer . 166

9.5 Available ufuncs . 167

9.5.1 Math operations . 167

9.5.2 Trigonometric functions . 170

9.5.3 Bit-twiddling functions . 171

9.5.4 Comparison functions . 172

9.5.5 Floating functions . 174

10 Basic Modules 177

10.1 Linear Algebra (linalg) . 177

10.2 Discrete Fourier Transforms (fft) 180

10.3 Random Numbers (random) . 184

10.3.1 Discrete Distributions . 185

10.3.2 Continuous Distributions . 187

10.3.3 Miscellaneous utilities . 194

10.4 Matrix-specific functions (matlib) . 194

10.5 Ctypes utiltity functions (ctypeslib) 194

11 Testing and Packaging 196

11.1 Testing . 196

11.2 NumPy Distutils . 199

11.2.1 misc util . 199

11.2.2 Other modules . 206

11.3 Conversion of .src files . 208

11.3.1 Fortran files . 208

11.3.1.1 Named repeat rule 208

11.3.1.2 Short repeat rule . 208

11.3.1.3 Pre-defined names 209

11.3.2 Other files . 209

II C-API 211

12 New Python Types and C-Structures 212

5

12.1 New Python Types Defined . 213

12.1.1 PyArray Type . 214

12.1.2 PyArrayDescr Type . 215

12.1.3 PyUFunc Type . 223

12.1.4 PyArrayIter Type . 226

12.1.5 PyArrayMultiIter Type . 227

12.1.6 PyArrayFlags Type . 228

12.1.7 ScalarArrayTypes . 228

12.2 Other C-Structures . 229

12.2.1 PyArray Dims . 229

12.2.2 PyArray Chunk . 230

12.2.3 PyArrayInterface . 230

12.2.4 Internally used structures . 232

12.2.4.1 PyUFuncLoopObject 232

12.2.4.2 PyUFuncReduceObject 232

12.2.4.3 PyUFunc Loop1d 232

12.2.4.4 PyArrayMapIter Type 232

13 Complete API 233

13.1 Configuration defines . 233

13.1.1 Guaranteed to be defined . 233

13.1.2 Possible defines . 234

13.2 Array Data Types . 235

13.2.1 Enumerated Types . 235

13.2.2 Defines . 236

13.2.2.1 Max and min values for integers 236

13.2.2.2 Number of bits in data types 236

13.2.2.3 Bit-width references to enumerated typenums 237

13.2.2.4 Integer that can hold a pointer 237

13.2.3 C-type names . 237

13.2.3.1 Boolean . 237

13.2.3.2 (Un)Signed Integer 237

13.2.3.3 (Complex) Floating point 238

13.2.3.4 Bit-width names . 238

13.2.4 Printf Formatting . 238

13.3 Array API . 239

13.3.1 Array structure and data access 239

6

13.3.1.1 Data access . 240

13.3.2 Creating arrays . 241

13.3.2.1 From scratch . 241

13.3.2.2 From other objects 244

13.3.3 Dealing with types . 249

13.3.3.1 General check of Python Type 249

13.3.3.2 Data-type checking 251

13.3.3.3 Converting data types 254

13.3.3.4 New data types . 256

13.3.3.5 Special functions for PyArray OBJECT 257

13.3.4 Array flags . 258

13.3.4.1 Basic Array Flags 258

13.3.4.2 Combinations of array flags 259

13.3.4.3 Flag-like constants 259

13.3.4.4 Flag checking . 260

13.3.5 Array method alternative API 261

13.3.5.1 Conversion . 261

13.3.5.2 Shape Manipulation 263

13.3.5.3 Item selection and manipulation 265

13.3.5.4 Calculation . 268

13.3.6 Functions . 270

13.3.6.1 Array Functions . 270

13.3.6.2 Other functions . 272

13.3.7 Array Iterators . 273

13.3.8 Broadcasting (multi-iterators) 274

13.3.9 Array Scalars . 276

13.3.10Data-type descriptors . 278

13.3.11Conversion Utilities . 280

13.3.11.1 For use with PyArg ParseTuple 280

13.3.11.2 Other conversions 282

13.3.12Miscellaneous . 283

13.3.12.1 Importing the API 283

13.3.12.2 Internal Flexibility 284

13.3.12.3 Memory management 285

13.3.12.4 Threading support 285

13.3.12.5 Priority . 287

13.3.12.6 Default buffers . 287

7

13.3.12.7 Other constants . 287

13.3.12.8 Miscellaneous Macros 288

13.3.12.9 Enumerated Types 289

13.4 UFunc API . 289

13.4.1 Constants . 289

13.4.2 Macros . 290

13.4.3 Functions . 290

13.4.4 Generic functions . 293

13.5 Importing the API . 295

14 How to extend NumPy 297

14.1 Writing an extension module . 297

14.2 Required subroutine . 298

14.3 Defining functions . 299

14.3.1 Functions without keyword arguments 300

14.3.2 Functions with keyword arguments 301

14.3.3 Reference counting . 302

14.4 Dealing with array objects . 303

14.4.1 Converting an arbitrary sequence object 304

14.4.2 Creating a brand-new ndarray 307

14.4.3 Getting at ndarray memory and accessing elements of the

ndarray . 308

14.5 Example . 309

15 Beyond the Basics 311

15.1 Iterating over elements in the array 311

15.1.1 Basic Iteration . 311

15.1.2 Iterating over all but one axis 313

15.1.3 Iterating over multiple arrays 313

15.1.4 Broadcasting over multiple arrays 314

15.2 Creating a new universal function . 315

15.3 User-defined data-types . 318

15.3.1 Adding the new data-type . 319

15.3.2 Registering a casting function 319

15.3.3 Registering coercion rules . 320

15.3.4 Registering a ufunc loop . 321

15.4 Subtyping the ndarray in C . 322

8

15.4.1 Creating sub-types . 322

15.4.2 Specific features of ndarray sub-typing 323

15.4.2.1 The array finalize method 323

15.4.2.2 The array priority attribute 324

15.4.2.3 The array wrap method 324

16 Using Python as glue 325

16.1 Calling other compiled libraries from Python 326

16.2 Hand-generated wrappers . 327

16.3 f2py . 327

16.3.1 Creating source for a basic extension module 328

16.3.2 Creating a compiled extension module 328

16.3.3 Improving the basic interface 329

16.3.4 Inserting directives in Fortran source 330

16.3.5 A filtering example . 331

16.3.6 Calling f2py from Python . 332

16.3.7 Automatic extension module generation 333

16.3.8 Conclusion . 333

16.4 weave . 334

16.4.1 Speed up code involving arrays (also see scipy.numexpr) . . . 334

16.4.2 Inline C-code . 335

16.4.3 Simplify creation of an extension module 337

16.4.4 Conclusion . 338

16.5 Pyrex . 338

16.5.1 Pyrex-add . 340

16.5.2 Pyrex-filter . 341

16.5.3 Conclusion . 342

16.6 ctypes . 343

16.6.1 Having a shared library . 344

16.6.2 Loading the shared library 345

16.6.3 Converting arguments . 346

16.6.4 Calling the function . 347

16.6.5 Complete example . 348

16.6.6 Conclusion . 352

16.7 Additional tools you may find useful 353

16.7.1 SWIG . 353

16.7.2 SIP . 354

9

16.7.3 Boost Python . 354

16.7.4 Instant . 355

16.7.5 PyInline . 356

16.7.6 PyFort . 356

17 Code Explanations 357

17.1 Memory model . 357

17.2 Data-type encapsulation . 358

17.3 N-D Iterators . 359

17.4 Broadcasting . 359

17.5 Array Scalars . 360

17.6 Advanced (“Fancy”) Indexing . 361

17.6.1 Fancy-indexing check . 361

17.6.2 Fancy-indexing implementation 362

17.6.2.1 Creating the mapping object 362

17.6.2.2 Binding the mapping object 362

17.6.2.3 Getting (or Setting) 363

17.7 Universal Functions . 363

17.7.1 Setup . 364

17.7.2 Function call . 365

17.7.2.1 One Loop . 366

17.7.2.2 Strided Loop . 366

17.7.2.3 Buffered Loop . 366

17.7.3 Final output manipulation . 367

17.7.4 Methods . 367

17.7.4.1 Setup . 367

17.7.4.2 Reduce . 368

17.7.4.3 Accumulate . 369

17.7.4.4 Reduceat . 369

10

List of Tables

2.1 Built-in array-scalar types corresponding to data-types for an ndar-

ray. The bold-face types correspond to standard Python types. The

object type is special because arrays with dtype=’O’ do not return

an array scalar on item access but instead return the actual object

referenced in the array. 22

3.1 Attributes of the ndarray . 47

3.2 Array conversion methods . 59

3.3 Array item selection and shape manipulation methods. If axis is an

argument, then the calculation is performed along that axis. An axis

value of None means the array is flattened before calculation proceeds. 67

3.4 Array object calculation methods. If axis is an argument, then the

calculation is performed along that axis. An axis value of None means

the array is flattened before calculation proceeds. All of these meth-

ods can take an optional out= argument which can specify the output

array to write the results into. 71

6.1 Array scalar types that inherit from basic Python types. The intc

array data type might also inherit from the IntType if it has the same

number of bits as the int array data type on your platform. 129

9.1 Universal function (ufunc) attributes. 161

10.1 Functions in numpy.dual (both in NumPy and SciPy) 178

11

Part I

NumPy from Python

12

Chapter 1

Origins of NumPy

A complex system that works is invariably found to have evolved

from a simple system that worked

—John Gall

Copy from one, it’s plagiarism; copy from two, it’s research.

—Wilson Mizner

NumPy builds on (and is a successor to) the successful Numeric array object.

Its goal is to create the corner-stone for a useful environment for scientific com-

puting. In order to better understand the people surrounding NumPy and (its

library-package) SciPy, I will explain a little about how SciPy and (current) NumPy

originated. In 1998, as a graduate student studying biomedical imaging at the

Mayo Clinic in Rochester, MN, I came across Python and its numerical extension

(Numeric) while I was looking for ways to analyze large data sets for Magnetic

Resonance Imaging and Ultrasound using a high-level language. I quickly fell in

love with Python programming which is a remarkable statement to make about a

programming language. If I had not seen others with the same view, I might have

seriously doubted my sanity. I became rather involved in the Numeric Python com-

munity, adding the C-API chapter to the Numeric documentation (for which Paul

Dubois graciously made me a co-author).

As I progressed with my thesis work, programming in Python was so enjoyable

that I felt inhibited when I worked with other programming frameworks. As a result,

13

when a task I needed to perform was not available in the core language, or in the

Numeric extension, I looked around and found C or Fortran code that performed

the needed task, wrapped it into Python (either by hand or using SWIG), and used

the new functionality in my programs.

Along the way, I learned a great deal about the underlying structure of Numeric

and grew to admire it’s simple but elegant structures that grew out of the mechanism

by which Python allows itself to be extended.

NOTE

Numeric was originally written in 1995 largely by Jim Hugunin

while he was a graduate student at MIT. He received help from

many people including Jim Fulton, David Ascher, Paul Dubois,

and Konrad Hinsen. These individuals and many others added

comments, criticisms, and code which helped the Numeric exten-

sion reach stability. Jim Hugunin did not stay long as an active

member of the community — moving on to write Jython and, later,

Iron Python.

By operating in this need-it-make-it fashion I ended up with a substantial li-

brary of extension modules that helped Python + Numeric become easier to use

in a scientific setting. These early modules included raw input-output functions,

a special function library, an integration library, an ordinary differential equation

solver, some least-squares optimizers, and sparse matrix solvers. While I was doing

this laborious work, Pearu Peterson noticed that a lot of the routines I was wrap-

ping were written in Fortran and there was no simplified wrapping mechanism for

Fortran subroutines (like SWIG for C). He began the task of writing f2py which

made it possible to easily wrap Fortran programs into Python. I helped him a little

bit, mostly with testing and contributing early function-call-back code, but he put

forth the brunt of the work. His result was simply amazing to me. I’ve always been

impressed with f2py, especially because I knew how much effort writing and main-

taining extension modules could be. Anybody serious about scientific computing

with Python will appreciate that f2py is distributed along with NumPy.

When I finished my Ph.D. in 2001, Eric Jones (who had recently completed his

Ph.D. at Duke) contacted me because he had a collection of Python modules he had

developed as part of his thesis work as well. He wanted to combine his modules with

mine into one super package. Together with Pearu Peterson we joined our efforts,

and SciPy was born in 2001. Since then, many people have contributed module

14

code to SciPy including Ed Schofield, Robert Cimrman, David M. Cooke, Charles

(Chuck) Harris, Prabhu Ramachandran, Gary Strangman, Jean-Sebastien Roy, and

Fernando Perez. Others such as Travis Vaught, David Morrill, Jeff Whitaker, and

Louis Luangkesorn have contributed testing and build support.

At the start of 2005, SciPy was at release 0.3 and relatively stable for an early

version number. Part of the reason it was difficult to stabilize SciPy was that the

array object upon which SciPy builds was undergoing a bit of an upheaval. At about

the same time as SciPy was being built, some Numeric users were hitting up against

the limited capabilities of Numeric. In particular, the ability to deal with memory

mapped files (and associated alignment and swapping issues), record arrays, and

altered error checking modes were important but limited or non-existent in Numeric.

As a result, numarray was created by Perry Greenfield, Todd Miller, and Rick White

at the Space Science Telescope Institute as a replacement for Numeric. Numarray

used a very different implementation scheme as a mix of Python classes and C

code (which led to slow downs in certain common uses). While improving some

capabilities, it was slow to pick up on the more advanced features of Numeric’s

universal functions (ufuncs) — never re-creating the C-API that SciPy depended

on. This made it difficult for SciPy to “convert” to numarray.

Many newcomers to scientific computing with Python were told that numarray

was the future and started developing for it. Very useful tools were developed

that could not be used with Numeric (because of numarray’s change in C-API),

and therefore could not be used easily in SciPy. This state of affairs was very

discouraging for me personally as it left the community fragmented. Some developed

for numarray, others developed as part of SciPy. A few people even rejected adopting

Python for scientific computing entirely because of the split. In addition, I estimate

that quite a few Python users simply stayed away from both SciPy and numarray,

leaving the community smaller than it could have been given the number of people

that use Python for science and engineering purposes.

It should be recognized that the split was not intentional, but simply an out-

growth of the different and exacting demands of scientific computing users. My

describing these events should not be construed as assigning blame to anyone. I

very much admire and appreciate everyone I’ve met who is involved with scientific

computing and Python. Using a stretched biological metaphor, it is only through

the process of dividing and merging that better results are born. I think this concept

applies to NumPy.

In early 2005, I decided to begin an effort to help bring the diverging community

together under a common framework if it were possible. I first looked at numarray

15

to see what could be done to add the missing features to make SciPy work with

it as a core array object. After a couple of days of studying numarray, I was not

enthusiastic about this approach. My familiarity with the Numeric code base no

doubt biased my opinion, but it seemed to me that the features of Numarray could

be added back to Numeric with a few fundamental changes to the core object. This

would make the transition of SciPy to a more enhanced array object much easier

in my mind.

Therefore, I began to construct this hybrid array object complete with an en-

hanced set of universal (broadcasting) functions that could deal with it. Along the

way, quite a few new features and significant enhancements were added to the array

object and its surrounding infrastructure. This book describes the result of that

year-and-a-half-long effort which culminated with the release of NumPy 0.9.2 in

early 2006 and NumPy 1.0 in late 2006. I first named the new package, SciPy Core,

and used the scipy namespace. However, after a few months of testing under that

name, it became clear that a separate namespace was needed for the new package.

As a result, a rapid search for a new name resulted in actually coming back to the

NumPy name which was the unofficial name of Numerical Python but never the

actual namespace. Because the new package builds on the code-base of and is a

successor to Numeric, I think the NumPy name is fitting and hopefully not too

confusing to new users.

This book only briefly outlines some of the infrastructure that surrounds the

basic objects in NumPy to provide the additional functionality contained in the older

Numeric package (i.e. LinearAlgebra, RandomArray, FFT). This infrastructure in

NumPy includes basic linear algebra routines, Fourier transform capabilities, and

random number generators. In addition, the f2py module is described in its own

documentation, and so is only briefly mentioned in the second part of the book.

There are also extensions to the standard Python distutils and testing frameworks

included with NumPy that are useful in constructing your own packages built on top

of NumPy. The central purpose of this book, however, is to describe and document

the basic NumPy system that is available under the numpy namespace.

NOTE

The numpy namespace includes all names under the numpy.core

and numpy.lib namespaces as well. Thus, import numpy will

also import the names from numpy.core and numpy.lib. This is the

recommended way to use numpy.

16

The following table gives a brief outline of the sub-packages contained in numpy

package.

Sub-Package Purpose Comments

core basic objects all names exported to numpy

lib additional utilities all names exported to numpy

linalg basic linear algebra old LinearAlgebra from Numeric

fft discrete Fourier transforms old FFT from Numeric

random random number generators old RandomArray from Numeric

distutils enhanced build and distribution improvements built on standard distutils

testing unit-testing utility functions useful for testing

f2py automatic wrapping of Fortran code a useful utility needed by SciPy

17

Chapter 2

Object Essentials

Our programs last longer if we manage to build simple abstractions

for ourselves...

—Ron Jeffries

I will tell you the truth as soon as I figure it out.

—Wayne Birmingham

NumPy provides two fundamental objects: an N-dimensional array object

(ndarray) and a universal function object (ufunc). In addition, there are other

objects that build on top of these which you may find useful in your work, and these

will be discussed later. The current chapter will provide background information

on just the ndarray and the ufunc that will be important for understanding the

attributes and methods to be discussed later.

An N-dimensional array is a homogeneous collection of “items” indexed using N

integers. There are two essential pieces of information that define an N -dimensional

array: 1) the shape of the array, and 2) the kind of item the array is composed of.

The shape of the array is a tuple of N integers (one for each dimension) that

provides information on how far the index can vary along that dimension. The

other important information describing an array is the kind of item the array is

composed of. Because every ndarray is a homogeneous collection of exactly the

same data-type, every item takes up the same size block of memory, and each block

18

of memory in the array is interpreted in exactly the same way1.

i TIP

All arrays in NumPy are indexed starting at 0 and ending at M-1

following the Python convention.

For example, consider the following piece of code:

>>> a = array([[1,2,3],[4,5,6]])

>>> a.shape

(2, 3)

>>> a.dtype

dtype(’int32’)

NOTE

for all code in this book it is assumed that you have first entered

from numpy import * . In addition, any previously defined ar-

rays are still defined for subsequent examples.

This code defines an array of size 2×3 composed of 4-byte (little-endian) integer

elements (on my 32-bit platform). We can index into this two-dimensional array

using two integers: the first integer running from 0 to 1 inclusive and the second

from 0 to 2 inclusive. For example, index (1, 1) selects the element with value 5:

>>> a[1,1]

5

All code shown in the shaded-boxes in this book has been (automatically) exe-

cuted on a particular version of NumPy. The output of the code shown below shows

which version of NumPy was used to create all of the output in your copy of this

book.

>>> import numpy; print numpy. version

1.0.2.dev3478

1By using OBJECT arrays, one can effectively have heterogeneous arrays, but the system still
sees each element of the array as exactly the same thing (a reference to a Python object).

19

header ...
ndarray

scalar
array

head

data−type

Figure 2.1: Conceptual diagram showing the relationship between the three fun-
damental objects used to describe the data in an array: 1) the ndarray itself, 2)
the data-type object that describes the layout of a single fixed-size element of the
array, 3) the array-scalar Python object that is returned when a single element of
the array is accessed.

2.1 Data-Type Descriptors

In NumPy, an ndarray is an N -dimensional array of items where each item takes

up a fixed number of bytes. Typically, this fixed number of bytes represents a

number (e.g. integer or floating-point). However, this fixed number of bytes could

also represent an arbitrary record made up of any collection of other data types.

NumPy achieves this flexibility through the use of a data-type (dtype) object. Every

array has an associated dtype object which describes the layout of the array data.

Every dtype object, in turn, has an associated Python type-object that determines

exactly what type of Python object is returned when an element of the array is

accessed. The dtype objects are flexible enough to contain references to arrays

of other dtype objects and, therefore, can be used to define nested records. This

advanced functionality will be described in better detail later as it is mainly useful

for the recarray (record array) subclass that will also be defined later. However, all

ndarrays can enjoy the flexibility provided by the dtype objects. Figure 2.1 provides

a conceptual diagram showing the relationship between the ndarray, its associated

data-type object, and an array-scalar that is returned when a single-element of the

array is accessed. Note that the data-type points to the type-object of the array

scalar. An array scalar is returned using the type-object and a particular element

of the ndarray.

Every dtype object is based on one of 21 built-in dtype objects. These built-

in objects allow numeric operations on a wide-variety of integer, floating-point,

20

and complex data types. Associated with each data-type is a Python type object

whose instances are array scalars. This type-object can be obtained using the type

attribute of the dtype object. Python typically defines only one data-type of a

particular data class (one integer type, one floating-point type, etc.). This can be

convenient for some applications that don’t need to be concerned with all the ways

data can be represented in a computer. For scientific applications, however, this is

not always true. As a result, in NumPy, their are 21 different fundamental Python

data-type-descriptor objects built-in. These descriptors are mostly based on the

types available in the C language that CPython is written in. However, there are a

few types that are extremely flexible, such as str , unicode , and void .

The fundamental data-types are shown in Table 2.1. Along with their (mostly)

C-derived names, the integer, float, and complex data-types are also available using

a bit-width convention so that an array of the right size can always be ensured

(e.g. int8, float64, complex128). The C-like names are also accessible using a

character code which is also shown in the table (use of the character codes, however,

is discouraged). Names for the data types that would clash with standard Python

object names are followed by a trailing underscore, ’ ’. These data types are so

named because they use the same underlying precision as the corresponding Python

data types. Most scientific users should be able to use the array-enhanced scalar

objects in place of the Python objects. The array-enhanced scalars inherit from the

Python objects they can replace and should act like them under all circumstances

(except for how errors are handled in math computations).

i TIP

The array types bool , int , complex , float , object , uni-

code , and str are enhanced-scalars. They are very similar to

the standard Python types (without the trailing underscore) and

inherit from them (except for bool and object). They can be used

in place of the standard Python types whenever desired. Whenever

a data type is required, as an argument, the standard Python types

are recognized as well.

Three of the data types are flexible in that they can have items that are of an

arbitrary size: the str type, the unicode type, and the void type. While, you

can specify an arbitrary size for these types, every item in an array is still of that

specified size. The void type, for example, allows for arbitrary records to be defined

as elements of the array, and can be used to define exotic types built on top of the

21

Table 2.1: Built-in array-scalar types corresponding to data-types for an ndarray.
The bold-face types correspond to standard Python types. The object type is
special because arrays with dtype=’O’ do not return an array scalar on item access
but instead return the actual object referenced in the array.

Type Bit-Width Character

bool boolXX ’?’
byte intXX ’b’
short ’h’
intc ’i’
int ’l’

longlong ’q’
intp ’p’

ubyte uintXX ’B’
ushort ’H’
uintc ’I’
uint ’L’

ulonglong ’Q’
uintp ’P’
single floatXX ’f’
float ’d’

longfloat ’g’
csingle complexXX ’F’

complex ’D’
clongfloat ’G’
object ’O’

str ’S#’
unicode ’U#’

void ’V#’

basic ndarray .

NOTE

The two types intp and uintp are not separate types. They are

names bound to a specific integer type just large enough to hold a

memory address (a pointer) on the platform.

22

WARNING

Numeric Compatibility: If you used old typecode characters in

your Numeric code (which was never recommended), you will need

to change some of them to the new characters. In particular,

the needed changes are ’c->’S1’, ’b’->’B’, ’1’->’b’, ’s’->’h’, ’w’-

>’H’, and ’u’->’I’. These changes make the typecharacter conven-

tion more consistent with other Python modules such as the struct

module.

The fundamental data-types are arranged into a hierarchy of Python type-

objects shown in Figure 2.2. Each of the leaves on this hierarchy correspond to

actual data-types that arrays can have (in other words, there is a built in dtype ob-

ject associated with each of these new types). They also correspond to new Python

objects that can be created. These new objects are “scalar” types corresponding

to each fundamental data-type. Their purpose is to smooth out the rough edges

that result when mixing scalar and array operations. These scalar objects will be

discussed in more detail in Chapter 6. The other types in the hierarchy define

particular categories of types. These categories can be useful for testing whether

or not the object returned by self.dtype.type is of a particular class (using

issubclass).

2.2 Basic indexing (slicing)

Indexing is a powerful tool in Python and NumPy takes full advantage of this power.

In fact, some of capabilities of Python’s indexing were first established by the needs

of Numeric users.2 Indexing is also sometimes called slicing in Python, and slicing

for an ndarray works very similarly as it does for other Python sequences. There

are three big differences: 1) slicing can be done over multiple dimensions, 2) exactly

one ellipsis object can be used to indicate several dimensions at once, 3) slicing

cannot be used to expand the size of an array (unlike lists).

A few examples should make slicing more clear. Suppose A is a 10 × 20 array,

then A[3] is the same as A[3, :] and represents the 4th length-20 “row” of the array.

On the other hand, A[:, 3] represents the 4th length-10 “column” of the array. Every

2For example, the ability to index with a comma separated list of objects and have it correspond
to indexing with a tuple is a feature added to Python at the request of the NumPy community.
The Ellipsis object was also added to Python explicitly for the NumPy community. Extended
slicing (wherein a step can be provided) was also a feature added to Python because of Numeric.

23

Figure 2.2: Hierarchy of type objects representing the array data types. Not shown
are the two integer types intp and uintp which just point to the integer type
that holds a pointer for the platform. All the number types can be obtained using
bit-width names as well.

24

third element of the 4th column can be selected as A[:: 3, 3]. Ellipses can be used to

replace zero or more “:” terms. In other words, an Ellipsis object expands to zero

or more full slice objects (“:”) so that the total number of dimensions in the slicing

tuple matches the number of dimensions in the array. Thus, if A is 10×20×30×40,

then A[3 :, ..., 4] is equivalent to A[3 :, :, :, 4] while A[..., 3] is equivalent to A[:, :, :, 3].

The following code illustrates some of these concepts:

>>> a = arange(60).reshape(3,4,5); print a

[[[0 1 2 3 4]

[5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

[[20 21 22 23 24]

[25 26 27 28 29]

[30 31 32 33 34]

[35 36 37 38 39]]

[[40 41 42 43 44]

[45 46 47 48 49]

[50 51 52 53 54]

[55 56 57 58 59]]]

>>> print a[...,3]

[[3 8 13 18]

[23 28 33 38]

[43 48 53 58]]

>>> print a[1,...,3]

[23 28 33 38]

>>> print a[:,:,2]

[[2 7 12 17]

[22 27 32 37]

[42 47 52 57]]

>>> print a[0,::2,::2]

[[0 2 4]

[10 12 14]]

25

2.3 Memory Layout of ndarray

On a fundamental level, an N -dimensional array object is just a one-dimensional se-

quence of memory with fancy indexing code that maps an N -dimensional index into

a one-dimensional index. The one-dimensional index is necessary on some level be-

cause that is how memory is addressed in a computer. The fancy indexing, however,

can be very helpful for translating our ideas into computer code. This is because

many concepts we wish to model on a computer have a natural representation as

an N -dimensional array. While this is especially true in science and engineering,

it is also applicable to many other arenas which can be appreciated by considering

the popularity of the spreadsheet as well as “image processing” applications.

WARNING

Some high-level languages give pre-eminence to a particular use of

2-dimensional arrays as Matrices. In NumPy, however, the core

object is the more general N -dimensional array. NumPy defines a

matrix object as a sub-class of the N-dimensional array.

In order to more fully understand the array object along with its attributes

and methods it is important to learn more about how an N -dimensional array is

represented in the computer’s memory. A complete understanding of this layout is

only essential for optimizing algorithms operating on general purpose arrays. But,

even for the casual user, a general understanding of memory layout will help to

explain the use of certain array attributes that may otherwise be mysterious.

2.3.1 Contiguous Memory Layout

There is a fundamental ambiguity in how the mapping to a one-dimensional index

can take place which is illustrated for a 2-dimensional array in Figure 2.3. In that

figure, each block represents a chunk of memory that is needed for representing

the underlying array element. For example, each block could represent the 8 bytes

needed to represent a double-precision floating point number.

In the figure, two arrays are shown, a 4x3 array and a 3x4 array. Each of these

arrays takes 12 blocks of memory shown as a single, contiguous segment. How this

memory is used to form the abstract 2-dimensional array can vary, however, and

the ndarray object supports both styles. Which style is in use can be interrogated

by the use of the flags attribute which returns a dictionary of the state of array

flags.

26

11109876543210

C

11109

876

543

210

(0,0) (0,2)

(1,0) (1,2)(1,1)

(2,2)

(3,2)

(0,1)

(2,0)

(3,0)

(2,1)

(3,1)

Fortran

11

10

9

8

7

6

5

4

3

2

1

0

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(1,3)

(2,3)

(0,3)

Figure 2.3: Options for memory layout of a 2-dimensional array.

In the C-style of N -dimensional indexing shown on the left of Figure 2.3 the

last N -dimensional index “varies the fastest.” In other words, to move through

computer memory sequentially, the last index is incremented first, followed by the

second-to-last index and so forth. Some of the algorithms in NumPy that deal with

N -dimensional arrays work best with this kind of data.

In the Fortran-style of N -dimensional indexing shown on the right of Figure 2.3,

the first N -dimensional index “varies the fastest.” Thus, to move through computer

memory sequentially, the first index is incremented first until it reaches the limit in

that dimension, then the second index is incremented and the first index is reset to

zero. While NumPy can be compiled without the use of a Fortran compiler, several

modules of SciPy (available separately) rely on underlying algorithms written in

Fortran. Algorithms that work on N -dimensional arrays that are written in Fortran

typically expect Fortran-style arrays.

The two-styles of memory layout for arrays are connected through the transpose

operation. Thus, if A is a (contiguous) C-style array, then the same block of mem-

ory can be used to represent AT as a (contiguous) Fortran-style array. This kind

of understanding can be useful when trying to optimize the wrapping of Fortran

subroutines, or if a more detailed understanding of how to write algorithms for

generally-indexed arrays is desired. But, fortunately, the casual user who does not

care if an array is copied occasionally to get it into the right orientation needed for

a particular algorithm can forget about how the array is stored in memory and just

visualize it as an N -dimensional array (that is, after all, the whole point of creating

the ndarray object in the first place).

27

2.3.2 Non-contiguous memory layout

Both of the examples presented above are single-segment arrays where the entire

array is visited by sequentially marching through memory one element at a time.

When an algorithm in C or Fortran expects an N-dimensional array, this single

segment (of a certain fundamental type) is usually what is expected along with

the shape N -tuple. With a single-segment of memory representing the array, the

one-dimensional index into computer memory can always be computed from the

N -dimensional index. This concept is explored further in the following paragraphs.

Let ni be the value of the ith index into an array whose shape is represented by

the N integers di (i = 0 . . .N − 1). Then, the one-dimensional index into a C-style

contiguous array is

nC =

N−1∑

i=0

ni

N−1∏

j=i+1

dj

while the one-dimensional index into a Fortran-style contiguous array is

nF =

N−1∑

i=0

ni

i−1∏

j=0

dj .

In these formulas we are assuming that

m∏

j=k

dj = dkdk+1 · · ·dm−1dm

so that if m < k, the product is 1. While perfectly general, these formulas may be

a bit confusing at first glimpse. Let’s see how they expand out for determining the

one-dimensional index corresponding to the element (1, 3, 2) of a 4× 5× 6 array. If

the array is stored as Fortran contiguous, then

nF = n0 · (1) + n1 · (4) + n2 · (4 · 5)

= 1 + 3 · 4 + 2 · 20 = 53.

On the other hand, if the array is stored as C contiguous, then

nC = n0 · (5 · 6) + n1 · (6) + n2 · (1)

= 1 · 30 + 3 · 6 + 2 · 1 = 50.

The general pattern should be more clear from these examples.

28

The formulas for the one-dimensional index of the N-dimensional arrays reveal

what results in an important generalization for memory layout. Notice that each

formula can be written as

nX =

N−1∑

i=0

nis
X
i

where sX
i gives the stride for dimension i.3 Thus, for C and Fortran contiguous

arrays respectively we have

sC
i =

N−1∏

j=i+1

dj = di+1di+2 · · · dN−1,

sF
i =

i−1∏

j=0

dj = d0d1 · · · di−1.

The stride is how many elements in the underlying one-dimensional layout of

the array one must jump in order to get to the next array element of a specific

dimension in the N-dimensional layout. Thus, in a C-style 4× 5× 6 array one must

jump over 30 elements to increment the first index by one, so 30 is the stride for

the first dimension (sC
0 = 30). If, for each array, we define a strides tuple with N

integers, then we have pre-computed and stored an important piece of how to map

the N -dimensional index to the one-dimensional one used by the computer.

In addition to providing a pre-computed table for index mapping, by allowing

the strides tuple to consist of arbitrary integers we have provided a more general

layout for the N -dimensional array. As long as we always use the stride information

to move around in the N -dimensional array, we can use any convenient layout we

wish for the underlying representation as long as it is regular enough to be defined

by constant jumps in each dimension. The ndarray object of NumPy uses this

stride information and therefore the underlying memory of an ndarray can be laid

out dis-contiguously.

NOTE

Several algorithms in NumPy work on arbitrarily strided arrays.

However, some algorithms require single-segment arrays. When an

irregularly strided array is passed in to such algorithms, a copy is

automatically made.

3Our definition of stride here is an element-based stride, while the strides attribute returns a
byte-based stride. The byte-based stride is the element itemsize multiplied by the element-based
stride.

29

An important situation where irregularly strided arrays occur is array indexing.

Consider again Figure 2.3. In that figure a high-lighted sub-array is shown. Define

C to be the 4 × 3 C contiguous array and F to be the 3 × 4 Fortran contiguous

array. The highlighted areas can be written respectively as C[1:3,1:3] and F [1:3,1:3].

As evidenced by the corresponding highlighted region in the one-dimensional view

of the memory, these sub-arrays are neither C contiguous nor Fortran contiguous.

However, they can still be represented by an ndarray object using the same striding

tuple as the original array used. Therefore, a regular indexing expression on an

ndarray can always produce an ndarray object without copying any data. This

is sometimes referred to as the “view” feature of array indexing, and one can see

that it is enabled by the use of striding information in the underlying ndarray

object. The greatest benefit of this feature is that it allows indexing to be done

very rapidly and without exploding memory usage (because no copies of the data

are made).

2.4 Universal Functions for arrays

NumPy provides a wealth of mathematical functions that operate on then ndarray

object. From algebraic functions such as addition and multiplication to trigonomet-

ric functions such as sin, and cos. Each universal function (ufunc) is an instance of

a general class so that function behavior is the same. All ufuncs perform element-

by-element operations over an array or a set of arrays (for multi-input functions).

The ufuncs themselves and their methods are documented in Part 9.

One important aspect of ufunc behavior that should be introduced early, how-

ever, is the idea of broadcasting. Broadcasting is used in several places throughout

NumPy and is therefore worth early exposure. To understand the idea of broad-

casting, you first have to be conscious of the fact that all ufuncs are always element-

by-element operations. In other words, suppose we have a ufunc with two inputs

and one output (e.g. addition) and the inputs are both arrays of shape 4 × 6 × 5.

Then, the output is going to be 4 × 6 × 5, and will be the result of applying the

underlying function (e.g. +) to each pair of inputs to produce the output at the

corresponding N -dimensional location.

Broadcasting allows ufuncs to deal in a meaningful way with inputs that do not

have exactly the same shape. In particular, the first rule of broadcasting is that

if all input arrays do not have the same number of dimensions, then a “1” will

be repeatedly pre-pended to the shapes of the smaller arrays until all the arrays

have the same number of dimensions. The second rule of broadcasting ensures that

30

arrays with a size of 1 along a particular dimension act as if they had the size of the

array with the largest shape along that dimension. The value of the array element

is assumed to be the same along that dimension for the “broadcasted” array. After

application of the broadcasting rules, the sizes of all arrays must match.

While a little tedious to explain, the broadcasting rules are easy to pick up by

looking at a couple of examples. Suppose there is a ufunc with two inputs, A and

B. Now supposed that A has shape 4 × 6 × 5 while B has shape 4 × 6 × 1. The

ufunc will proceed to compute the 4 × 6 × 5 output as if B had been 4 × 6 × 5 by

assuming that B[..., k] = B[..., 0] for k = 1, 2, 3, 4.

Another example illustrates the idea of adding 1’s to the beginning of the array

shape-tuple. Suppose A is the same as above, but B is a length 5 array. Because

of the first rule, B will be interpreted as a 1× 1 × 5 array, and then because of the

second rule B will be interpreted as a 4 × 6 × 5 array by repeating the elements of

B in the obvious way.

The most common alteration needed is to route-around the automatic pre-

pending of 1’s to the shape of the array. If it is desired, to add 1’s to the end

of the array shape, then dimensions can always be added using the newaxis name

in NumPy: B[..., newaxis, newaxis] returns an array with 2 additional 1’s appended

to the shape of B.

One important aspect of broadcasting is the calculation of functions on regularly

spaced grids. For example, suppose it is desired to show a portion of the multipli-

cation table by computing the function a ∗ b on a grid with a running from 6 to 9

and b running from 12 to 16. The following code illustrates how this could be done

using ufuncs and broadcasting.

>>> a = arange(6, 10); print a

[6 7 8 9]

>>> b = arange(12, 17); print b

[12 13 14 15 16]

>>> table = a[:,newaxis] * b

>>> print table

[[72 78 84 90 96]

[84 91 98 105 112]

[96 104 112 120 128]

[108 117 126 135 144]]

31

2.5 Summary of new features

More information about using arrays in Python can be found in the old Numeric doc-

umentation at http://numeric.scipy.org http://numeric.scipy.org . Quite a

bit of that documentation is still accurate, especially in the discussion of array ba-

sics. There are significant differences, however, and this book seeks to explain them

in detail. The following list tries to summarize the significant new features (over

Numeric) available in the ndarray and ufunc objects of NumPy:

1. more data types (all standard C-data types plus complex floats, Boolean,

string, unicode, and void *);

2. flexible data types where each array can have a different itemsize (but all

elements of the same array still have the same itemsize);

3. there is a true Python scalar type (contained in a hierarchy of types) for every

data-type an array can have;

4. data-type objects define the data-type with support for data-type objects with

fields and subarrays which allow record arrays with nested records;

5. many more array methods in addition to functional counterparts;

6. attributes more clearly distinguished from methods (attributes are intrinsic

parts of an array so that setting them changes the array itself);

7. array scalars covering all data types which inherit from Python scalars when

appropriate;

8. arrays can be misaligned, swapped, and in Fortran order in memory (facilitates

memory-mapped arrays);

9. arrays can be more easily read from text files and created from buffers and

iterators;

10. arrays can be quickly written to files in text and/or binary mode;

11. arrays support the removal of the 64-bit memory limitation as long as you

have Python 2.5 or later;

12. fancy indexing can be done on arrays using integer sequences and Boolean

masks;

32

http://numeric.scipy.org

13. coercion rules are altered for mixed scalar / array operations so that scalars

(anything that produces a 0-dimensional array internally) will not determine

the output type in such cases.

14. when coercion is needed, temporary buffer-memory allocation is limited to a

user-adjustable size;

15. errors are handled through the IEEE floating point status flags and there is

flexibility on a per-thread level for handling these errors;

16. one can register an error callback function in Python to handle errors are set

to ’call’ for their error handling;

17. ufunc reduce, accumulate, and reduceat can take place using a different type

then the array type if desired (without copying the entire array);

18. ufunc output arrays passed in can be a different type than expected from the

calculation;

19. ufuncs take keyword arguments which can specify 1) the error handling explic-

itly and 2) the specific 1-d loop to use by-passing the type-coercion detection.

20. arbitrary classes can be passed through ufuncs (array wrap and

array priority expand previous array method);

21. ufuncs can be easily created from Python functions;

22. ufuncs have attributes to detail their behavior, including a dynamic doc string

that automatically generates the calling signature;

23. several new ufuncs (frexp, modf, ldexp, isnan, isfinite, isinf, signbit);

24. new types can be registered with the system so that specialized ufunc loops

can be written over new type objects;

25. new types can also register casting functions and rules for fitting into the

“can-cast” hierarchy;

26. C-API enhanced so that more of the functionality is available from compiled

code;

27. C-API enhanced so array structure access can take place through macros;

28. new iterator objects created for easy handling in C of non-contiguous arrays;

33

29. new multi-iterator object created for easy handling in C of broadcasting;

30. types have more functions associated with them (no magic function lists in

the C-code). Any function needed is part of the type structure.

All of these enhancements will be documented more thoroughly in the remaining

portions of this book.

2.6 Summary of differences with Numeric

An effort was made to retain backwards compatibility with Numeric all the way to

the C-level. This was mostly accomplished, with a few changes that needed to be

made for consistency of the new system. If you are just starting out with NumPy,

then this section may be skipped.

There are two steps (one required and one optional) to converting code that

works with Numeric to work fully with NumPy The first step uses a com-

patibility layer and requires only small changes which can be handled by the

numpy.oldnumeric.alter code1 module. Code written to the compatibility layer will

work and be supported. The purpose of the compatibility layer is to make it easy to

convert to NumPy and many codes may only take this first step and work fine with

NumPy. The second step is optional as it removes dependency on the compatibility

layer and therefore requires a few more extensive changes. Many of these changes

can be performed by the numpy.oldnumeric.alter code2 module, but you may still

need to do some final tweaking by hand. Because many users will probably be con-

tent to only use the first step, the alter code2 module for second-stage migration

may not be as complete as it otherwise could be.

2.6.1 First-step changes

In order to use the compatibility layer there are still a few changes that need to be

made to your code. Many of these changes can be made by running the alter code1

module with your code as input.

1. Importing (the alter code1 module handles all these changes)

(a) import Numeric –> import numpy.oldnumeric as Numeric

(b) import Numeric as XX –> import numpy.oldnumeric as XX

(c) from Numeric import <name1>,...<nameN> –> from

numpy.oldnumeric import <name1>,...,<nameN>

34

(d) from Numeric import * –> from numpy.oldnumeric import *

(e) Similar name changes need to be made for Matrix, MLab, UserAr-

ray, LinearAlgebra, RandomArray RNG, RNG.Statistics, and FFT. The

new names are numpy.oldnumeric.<pkg> where <pkg> is matrix, mlab,

user array, linear algebra, random array, rng, rng stats, and fft.

(f) multiarray and umath (if you used them directly) are now

numpy.core.multiarray and numpy.core.umath, but it is more future

proof to replace usages of these internal modules with numpy.oldnumeric.

2. Method name changes and methods converted to attributes. The alter code1

module handles all these changes.

(a) arr.typecode() –> arr.dtype.char

(b) arr.iscontiguous() –> arr.flags.contiguous

(c) arr.byteswapped() –> arr.byteswap()

(d) arr.toscalar() –> arr.item()

(e) arr.itemsize() –> arr.itemsize

(f) arr.spacesaver() eliminated

(g) arr.savespace() eliminated

3. Some of the typecode characters have changed to be more consistent with

other Python modules (array and struct). You should only notice this change

if you used the actual typecode characters (instead of the named constants).

The alter code1 module will change uses of ’b’ to ’B’ for internal Numeric func-

tions that it knows about because NumPy will interpret ’b’ to mean a signed

byte type (instead of the old unsigned). It will also change the character codes

when they are used explicitly in the .astype method. In the compatibility layer

(and only in the compatibility layer), typecode-requiring function calls (e.g.

zeros, array) understand the old typecode characters.

The changes are (Numeric –> NumPy):

(a) ’b’ –> ’B’

(b) ’1’ –> ’b’

(c) ’s’ –> ’h’

(d) ’w’ –> ’H’

35

(e) ’u’ –> ’I’

4. arr.flat now returns an indexable 1-D iterator. This behaves correctly when

passed to a function, but if you expected methods or attributes on arr.flat

— besides .copy() — then you will need to replace arr.flat with arr.ravel()

(copies only when necessary) or arr.flatten() (always copies). The alter code1

module will change arr.flat to arr.ravel() unless you used the construct arr.flat

= obj or arr.flat[ind].

5. If you used type-equality testing on the objects returned from arrays, then you

need to change this to isinstance testing. Thus type(a[0]) is float or type(a[0])

== float should be changed to isinstance(a[0], float). This is because array

scalar objects are now returned from arrays. These inherit from the Python

scalars where they can, but define their own methods and attributes. This

conversion is done by alter code1 for the types (float, int, complex, and Ar-

rayType)

6. If your code should produce 0-d arrays. These no-longer have a length as they

should be interpreted similarly to real scalars which don’t have a length.

7. Arrays cannot be tested for truth value unless they are empty (returns False)

or have only one element. This means that if Z: where Z is an array will fail

(unless Z is empty or has only one element). Also the ’and’ and ’or’ operations

(which test for object truth value) will also fail on arrays of more than one

element. Use the .any() and .all() methods to test for truth value of an array.

8. Masked arrays return a special nomask object instead of None when there is

no mask on the array for the functions getmask and attribute access arr.mask

9. Masked array functions have a default axis of None (meaning ravel), make

sure to specify an axis if your masked arrays are larger than 1-d.

10. If you used the construct arr.shape=<tuple> , this will not work for array

scalars (which can be returned from array operations). You cannot set the

shape of an array-scalar (you can read it though). As a result, for more general

code you should use arr=arr.reshape(<tuple>) which works for both

array-scalars and arrays.

The alter code1 script should handle the changes outlined in steps 1-5 above. The

final incompatibilities in 6-9 are less common and must be modified by hand if

necessary.

36

2.6.2 Second-step changes

During the second phase of migration (should it be necessary) the compatibility

layer is dropped. This phase requires additional changes to your code. There is

another conversion module (alter code2) which can help but it is not complete.

The changes required to drop dependency on the compatibility layer are

1. Importing

(a) numpy.oldnumeric –> numpy

(b) from numpy.oldnumeric import * –> from numpy import * (this may

clobber more names and therefore require further fixes to your code but

then you didn’t do this regularly anyway did you). The recommended

procedure if this replacement causes problems is to fix the use of from

numpy.oldnumeric import * to extract only the required names and then

continue.

(c) numpy.oldnumeric.mlab –> None, the functions come from other places.

(d) numpy.oldnumeric.linear algebra –> numpy.lilnalg with name changes to

the functions (made lower case and shorter).

(e) numpy.oldnumeric.random array –> numpy.random with some name

changes to the functions.

(f) numpy.oldnumeic.fft –> numpy.fft with some name changes to the func-

tions.

(g) numpy.oldnumeric.rng –> None

(h) numpy.oldnumeric.rng stats –> None

(i) numpy.oldnumeric.user array –> numpy.lib.user array

(j) numpy.oldnumeric.matrix –> numpy

2. The typecode names are all lower-case and refer to type-objects corresponding

to array scalars. The character codes are understood by array-creation func-

tions but are not given names. All named type constants should be replaced

with their lower-case equivalents. Also, the old character codes ’1’, ’s’, ’w’,

and ’u’ are not understood as data-types. It is probably easiest to manually

replace these with Int8, Int16, UInt16, and UInt32 and let the alter code2

script convert the names to lower-case typeobjects.

3. Keyword and argument changes

37

(a) All typecode= keywords must be changed to dtype= .

(b) The savespace keyword argument has been removed from all functions

where it was present (array, sarray, asarray, ones, and zeros). The sarray

function is equivalent to asarray.

4. The default data-type in NumPy is float unlike in Numeric (and

numpy.oldnumeric) where it was int. There are several functions affected

by this so that if your code was relying on the default data-type, then it must

be changed to explicitly add dtype=int.

5. The nonzero function in NumPy returns a tuple of index arrays just like

the corresponding method. There is a flatnonzero function that first ravels

the array and then returns a single index array. This function should be

interchangeable with the old use of nonzero.

6. The default axis is None (instead of 0) to match the methods for the func-

tions take, repeat, sum, average, product, sometrue, alltrue, cumsum, and

cumproduct (from Numeric) and also for the functions average, max, min,

ptp, prod, std, and mean (from MLab).

7. The default axis is None (instead of -1) to match the methods for the functions

argmin, argmax, compress

2.6.3 Updating code that uses Numeric using alter codeN

Despite the long list of changes that might be needed given above, it is likely that

your code does not use any of the incompatible corners and it should not be too

difficult to convert from Numeric to NumPy. For example all of SciPy was converted

in about 2-3 days. The needed changes are largely search-and replace type changes,

and the alter codeN modules can help. The modules have two functions which help

the process:

convertfile (filename, orig=1)

Convert the file with the given filename to use NumPy. If orig is True, then

a backup is first made and given the name filename.orig. Then, the file is

converted and the updated code written over the top of the old file.

convertall (direc=os.path.curdir, orig=1)

38

Converts all the “.py” files in the given directory to use NumPy. Backups of all

the files are first made if orig is True as explained for the convertfile function.

convertsrc (direc=os.path.curdir, ext=None, orig=1)

Replace ’’Numeric/arrayobject.h’’ with ’’numpy/oldnumeric.h’’

in all files ending in the list of extensions given by ext (if ext is None, then all

files are updated). If orig is True, then first make a backup file with “.orig”

as the extension.

converttree (direc=os.path.curdir)

Walks the tree pointed to by direc and converts all “.py” modules in each sub-

directory to use NumPy. No backups of the files are made. Also, con-

verts all .h and .c files to replace ’’Numeric/arrayobject.h’’ with

’’numpy/oldnumeric.h’’ so that NumPy is used.

2.6.4 Changes to think about

Even if you don’t make changes to your old code. If you are used to coding in

Numeric, then you may need to adjust your coding style a bit. This list provides

some helpful things to remember.

1. Switch from using typecode characters to bitwidth type names or c-type names

2. Convert use of uppercase type-names Int32, Float, etc., to lower case int32,

float, etc.

3. Convert use of functions to method calls where appropriate but explicitly

specify any axis arguments for arrays greater than 1-d.

4. The names for standard computations like Fourier transforms, linear algebra,

and random-number generation have changed to conform to the standard of

lower-case names possibly separated by an underscore.

5. Look for ways to take advantage of advanced slicing, but remember it always

returns a copy and may be slower at times.

6. Remove any kludges you inserted to eliminate problems with Numeric that

are now gone.

7. Look for ways to take advantage of new features like expanded data-types

(record-arrays).

39

8. See if you can inherit from the ndarray directly, rather than using

user array.container (UserArray). However, if you were using UserArray in

a multiple-inheritance hierarchy this is going to be more difficult and you

can continue to use the standard container class in user array (but notice the

name change).

9. Watch your usage of scalars extracted from arrays. Treating Numeric arrays

like lists and then doing math on the elements 1 by 1 was always about 2x

slower than using real lists in Python. This can now be 3x-6x slower than using

lists in NumPy because of the increased complexity of both the indexing of

ndarrays and the math of array scalars. If you must select individual scalars

from NumPy, you can get some speed increases by using the item method

to get a standard Python scalar from an N-d array and by using the itemset

method to place a scalar into a particular location in the N-d array. This

complicates the appearance of the code, however. Also, when using these

methods inside a loop, be sure to assign the methods to a local variable to

avoid the attribute look-up at each loop iteration.

Throughout this book, warnings are inserted when compatibility issues with old

Numeric are raised. While you may not need to make any changes to get code to

run with the ndarray object, you will likely want to make changes to take advantage

of the new features of NumPy. If you get into a jam during the conversion process,

you should be aware that Numeric and NumPy can both be used together and they

will not interfere with each other. In addition, if you have Numeric 24.0 or newer,

they can even share the same memory. This makes it easy to use NumPy as well

as third-party tools that have not made the switch from Numeric yet.

2.7 Summary of differences with Numarray

Conversion from Numarray can also be relatively painless, depending on how de-

pendent your code is on the specific structure of the Numarray ufuncs, cfuncs,

and various array-like objects. The internals of Numarray can be quite differ-

ent and so depending on how intimately you used those internals adapting to

NumPy can be more or less difficult. C-code that used the Numarray C-API

can be easily adapted because NumPy includes a Numarray-compatible C-API

module. All you need to do is replace usage of “numarray/libnumarray.h” with

“numpy/libnumarray.h” and be sure the directory returned from the Python com-

mand numpy.get numarray include() is included in the list of directories used for

40

compilation.

On the Python-side the largest number of differences are in the methods and

attributes of the array and the way array data-types are represented. In addition,

arrays containing Python Objects, strings, and records are an integral part of the

array object and not handled using a separate class (although enhanced separate

classes do exist for the case of character arrays and record arrays).

As is the case with Numeric, there is a two-step process available for migrat-

ing code written for Numarray to work with NumPy. This process involves run-

ning functions in the modules alter code1 and alter code2 located in the numar-

ray sub-package of NumPy. These modules have interfaces identical to the ones

that convert Numeric code, but they work to convert code written for numarray.

The first module will convert your code to use the numarray compatibility module

(numpy.numarray), while the second will try and help convert code to move away

from dependency on the compatibility module. Because many users will proba-

bly be content to only use the first step, the alter code2 module for second-stage

migration may not be as complete as it otherwise could be.

Also, the alter code1 module is not guaranteed to convert every piece of working

numarray code to use NumPy. If your code relied on the internal module structure of

numarray or on how the class hierarchy was laid out, then it will need to be changed

manually to run with NumPy. Of course you can still use your code with Numarray

installed side-by-side and the two array objects should be able to exchange data

without copying.

2.7.1 First-step changes

The alter code1 script makes the following import and attribute/method changes

2.7.1.1 Import changes

• import numarray –> import numpy.numarray as numarray

• import numarray.package –> import numpy.numarray.package as numar-

ray package with all usages of numarray.package in the code replaced by nu-

marray package

• import numarray as <name> –> import numpy.numarray s <name>

• import numarray.package as <name> –> import numpy.numarray.package as

<name>

41

• from numarray import <names> –> from numpy.numarray import <names>

• from numarray.package import <names> –> from numpy.numarray.package

import <names>

2.7.1.2 Attribute and method changes

• .imaginary –> .imag

• .flat –> probably .ravel() (Many usages will still work correctly because you

can index and assign to self.flat)

• .byteswapped() –> .byteswap(False)

• .byteswap() –> .byteswap(True) (Returns a reference to self instead of None).

• self.info() –> numarray.info(self)

• .isaligned() –> .flags.aligned

• .isbyteswapped() –> not .dtype.isnative (the byte-order is a property of the

data-type object not the array itself in NumPy).

• .iscontiguous() –> .flags.c contiguous

• .is c array() –> .dtype.isnative and .flags.carray

• .is fortran contiguous() –> .flags.f contiguous

• .is f array() –> .dtype.isnative and .flags.farray

• .itemsize() –> .itemsize

• .nelements() –> .size

• self.new(type) –> numarray.newobj(self, type)

• .repeat(r) –> .repeat(r, axis=0)

• .size() –> .size

• .type() –> numarray.typefrom(self)

• .typecode() –> .dtype.char

• .stddev() –> .std()

42

• .togglebyteorder() –> numarray.togglebyteorder(self)

• .getshape() –> .shape

• .setshape(obj) –> .shape = obj

• .getflat() –> .ravel()

• .getreal() –> .real

• .setreal(obj) –> .real = obj

• .getimag() –> .imag

• .setimag(obj) –> .imag = obj

• .getimaginary() –> .imag

• .setimaginary(obj) –> .imag = obj

2.7.2 Second-step changes

One of the notable differences is that several functions (array, arange, fromfile, and

fromstring) do not take the shape= keyword argument. Instead you simply reshape

the result using the reshape method. Another notable difference is that instead of

allowing typecode=, type=, and dtype= variants for specifying the data-types, you

must use the dtype= keyword. Other differences include

• matrixmultiply(a,b) –> dot(a,b)

• innerproduct(a,b) –> inner(a,b)

• outerproduct(a,b) –> outer(a,b)

• kroneckerproduct(a,b) –> kron(a,b)

• tensormultiply(a,b) –> None

2.7.3 Additional Extension modules

There are three extension packages that come included with numarray which are

now downloaded separately. Stubs for these packages exist in numpy.numarray but

they try and find the actual code by looking at what is currently installed. These

packages are available in SciPy but can be installed separately as well:

43

• nd image –> scipy.ndimage

• convolve –> scipy.stsci.convolve

• image –> scipy.stsci.image

If you don’t want to install all of scipy, you can grab just these packages from SVN

using

svn co http://svn.scipy.org/svn/scipy/trunk/Lib/ndima ge ndimage

svn co http://svn.scipy.org/svn/scipy/trunk/Lib/stsci stsci

and then run

cd ndimage; sudo python setup.py install

cd stsci; sudo python setup.py install

On a Windows system, you can use the Tortoise SVN client which is integrated into

the Windows Explorer. It can be downloaded from http://tortoisesvn.tigris.org.

Instructions on how to use it are also provided on that site. After downloading

the packages from SVN, installation will still require a C-compiler (the mingw32

compiler works fine even with MSVC-compiled Python as long as you specify –

compiler=mingw32). Alternatively you can download binary releases of scipy from

http://www.scipy.org to get the needed functionality or use the Enthon edition of

Python.

44

